Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
2.
Int J Oncol ; 64(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577950

RESUMO

Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer­associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/patologia , Fibroblastos/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Resultado do Tratamento , Microambiente Tumoral
3.
J Hazard Mater ; 469: 133911, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430597

RESUMO

The activation of peracetic acid (PAA) by activated carbon (AC) is a promising approach for reducing micropollutants in groundwater. However, to harness the PAA/AC system's potential and achieve sustainable and low-impact groundwater remediation, it is crucial to quantify the individual contributions of active species. In this study, we developed a combined degradation kinetic and adsorption mass transfer model to elucidate the roles of free radicals, electron transfer processes (ETP), and adsorption on the degradation of antibiotics by PAA in groundwater. Our findings reveal that ETP predominantly facilitated the activation of PAA by modified activated carbon (AC600), contributing to ∼61% of the overall degradation of sulfamethoxazole (SMX). The carbonyl group (CO) on the surface of AC600 was identified as a probable site for the ETP. Free radicals contributed to ∼39% of the degradation, while adsorption was negligible. Thermodynamic and activation energy analyses indicate that the degradation of SMX within the PAA/AC600 system requires a relatively low energy input (27.66 kJ/mol), which is within the lower range of various heterogeneous Fenton-like reactions, thus making it easily achievable. These novel insights enhance our understanding of the AC600-mediated PAA activation mechanism and lay the groundwork for developing efficient and sustainable technologies for mitigating groundwater pollution. ENVIRONMENTAL IMPLICATION: The antibiotics in groundwater raises alarming environmental concerns. As groundwater serves as a primary source of drinking water for nearly half the global population, the development of eco-friendly technologies for antibiotic-contaminated groundwater remediation becomes imperative. The innovative PAA/AC600 system demonstrates significant efficacy in degrading micropollutants, particularly sulfonamide antibiotics. By integrating degradation kinetics and adsorption mass transfer models, this study sheds light on the intricate mechanisms involved, emphasizing the potential of carbon materials as sustainable tools in the ongoing battle for clean and safe groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Ácido Peracético , Oxirredução , Carvão Vegetal , Adsorção , Elétrons , Peróxido de Hidrogênio , Sulfametoxazol
4.
Oncogene ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509231

RESUMO

The loss of intercellular adhesion molecule E-cadherin is a hallmark of the epithelial-mesenchymal transition (EMT), during which tumor cells transition into an invasive phenotype. Accordingly, E-cadherin has long been considered a tumor suppressor gene; however, E-cadherin expression is paradoxically correlated with breast cancer survival rates. Using novel multi-compartment organoids and multiple in vivo models, we show that E-cadherin promotes a hyper-proliferative phenotype in breast cancer cells via interaction with the transmembrane receptor EGFR. The E-cad and EGFR interaction results in activation of the MEK/ERK signaling pathway, leading to a significant increase in proliferation via activation of transcription factors, including c-Fos. Pharmacological inhibition of MEK activity in E-cadherin positive breast cancer significantly decreases both tumor growth and macro-metastasis in vivo. This work provides evidence for a novel role of E-cadherin in breast tumor progression and identifies a new target to treat hyper-proliferative E-cadherin-positive breast tumors, thus providing the foundation to utilize E-cadherin as a biomarker for specific therapeutic success.

5.
Mol Genet Genomic Med ; 12(3): e2414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465842

RESUMO

BACKGROUND: Retinoblastoma (Rb) is the most common intraocular malignancy in childhood, originating from primitive retinal stem cells or cone precursor cells. It can be triggered by mutations of the RB1 gene or amplification of the MYCN gene. Rb may rarely present with polydactyly. METHODS: We conducted karyotype analysis, copy number variation sequencing, and whole-genome sequencing on the infant proband and his family. The clinical course and laboratory results of the proband's infant were documented and collected. We also reviewed the relevant literature. RESULTS: A 68-day-old boy presented with preaxial polydactyly and corneal edema. His intraocular pressure (IOP) was 40/19 mmHg, and color Doppler imaging revealed vitreous solid mass-occupying lesions with calcification in the right eye. Ocular CT showed flaky high-density and calcification in the right eye. This was classified as an International Retinoblastoma Staging System group E retinoblastoma with an indication for enucleation. Enucleation and orbital implantation were performed on the child's right eye. Karyotype analysis revealed an abnormal 46, XY, 15pstk+ karyotype, and the mother exhibited diploidy of the short arm of chromosome 15. The Alx-4 development factor, 13q deletion syndrome, and the PAPA2 gene have been reported as potential mechanisms for Rb combined with polydactyly. CONCLUSION: We report the case of a baby boy with Rb and polydactyly exhibiting a 46, XY, 15pstk+ Karyotype. We discuss potential genetic factors related to both Rb and polydactyly. Furthermore, there is a need for further exploration into the impact of chromosomal polymorphisms in Rb with polydactyly.


Assuntos
Calcinose , Polidactilia , Neoplasias da Retina , Retinoblastoma , Humanos , Lactente , Masculino , Variações do Número de Cópias de DNA , Cariótipo , Polidactilia/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , Retinoblastoma/patologia
6.
Adv Mater ; : e2311739, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345782

RESUMO

Dielectric polymers possessing high energy and low losses are of great interest for electronic and electric devices and systems. Nanocomposites in which high dielectric constant (high-K) nanofillers at high loading (>10 vol%) are admixed with polymer matrix have been investigated for decades, aiming at enhancing the dielectric performance, but with limited success. In 2017, it is discovered that reducing nanofiller loading to less than 0.5 vol% in polymer matrix can lead to marked enhancement in dielectric performance. Here, we reviewed the discoveries and advances of this unconventional approach to enhance dielectric performance of polymers. Experimental studies uncover that nanofillers lead to interfaces changes over distances larger than 100 nm. Experimental and modeling results show that introducing free volume in polymers reduces the constraints of glass matrix on dipoles in polymers, leading to enhanced K without affecting breakdown. Moreover, low-K nanofillers at low-volume loading serve as deep traps for charges, lowering conduction losses and increasing breakdown strength. The dilute nanocomposites provide new avenues for designing dielectric polymers with high K, minimal losses, and robust breakdown fields, thus achieving high energy and power density and low loss for operation over a broad temperature regime.

8.
Light Sci Appl ; 13(1): 32, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38286841

RESUMO

Researchers at the University of Oxford have introduced a groundbreaking technique called vectorial adaptive optics (V-AO), which extends the capabilities of traditional adaptive optics to correct for both polarization and phase aberrations. This novel approach opens new possibilities for manipulating the complex vectorial field in optical systems, enabling higher-dimensional feedback correction.

9.
J Environ Manage ; 352: 120021, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38183916

RESUMO

The global response to lithium scarcity is overstretched, and it is imperative to explore a green process to sustainably and selectively recover lithium from spent lithium-ion battery (LIB) cathodes. This work investigates the distinct leaching behaviors between lithium and transition metals in pure formic acid and the auxiliary effect of acetic acid as a solvent in the leaching reaction. A formic acid-acetic acid (FA-AA) synergistic system was constructed to selectively recycle 96.81% of lithium from spent LIB cathodes by regulating the conditions of the reaction environment to inhibit the leaching of non-target metals. Meanwhile, the transition metals generate carboxylate precipitates enriched in the leaching residue. The inhibition mechanism of manganese leaching by acetic acid and the leaching behavior of nickel or cobalt being precipitated after release was revealed by characterizations such as XPS, SEM, and FTIR. After the reaction, 90.50% of the acid can be recycled by distillation, and small amounts of the residual Li-containing concentrated solution are converted to battery-grade lithium carbonate by roasting and washing (91.62% recovery rate). This recycling process possesses four significant advantages: i) no additional chemicals are required, ii) the lithium sinking step is eliminated, iii) no waste liquid is discharged, and iv) there is the potential for profitability. Overall, this study provides a novel approach to the waste management technology of lithium batteries and sustainable recycling of lithium resources.


Assuntos
Formiatos , Lítio , Metais , Lítio/química , Metais/química , Reciclagem , Eletrodos , Fontes de Energia Elétrica , Ácido Acético
10.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3608-3624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38190690

RESUMO

Window-based attention has become a popular choice in vision transformers due to its superior performance, lower computational complexity, and less memory footprint. However, the design of hand-crafted windows, which is data-agnostic, constrains the flexibility of transformers to adapt to objects of varying sizes, shapes, and orientations. To address this issue, we propose a novel quadrangle attention (QA) method that extends the window-based attention to a general quadrangle formulation. Our method employs an end-to-end learnable quadrangle regression module that predicts a transformation matrix to transform default windows into target quadrangles for token sampling and attention calculation, enabling the network to model various targets with different shapes and orientations and capture rich context information. We integrate QA into plain and hierarchical vision transformers to create a new architecture named QFormer, which offers minor code modifications and negligible extra computational cost. Extensive experiments on public benchmarks demonstrate that QFormer outperforms existing representative vision transformers on various vision tasks, including classification, object detection, semantic segmentation, and pose estimation. The code will be made publicly available at QFormer.

11.
Bioorg Chem ; 144: 107141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244381

RESUMO

In this work, we rationally designed and synthesized two novel triazene-amonafide derivatives 2-(2-(diisopropylamino)ethyl)-5-(3,3-dimethyltriaz-1-en-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (D-11) and 5-(3,3-diethyltriaz-1-en-1-yl)-2-(2-(diisopropylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (D-12) as potential antitumor agents. The DNA damage induced by the intercalation mode of D-11 (D-12) towards DNA was electrochemically detected through the construction of efficient biosensors. The consecutive processes of reversible redox of naphthylimide ring and irreversible oxidation of triazene moiety were elucidated on the surface of glassy carbon electrode (GCE) by CV, SWV, and DPV methods. Electrochemical biosensors were obtained through the immobilization of ctDNA, G-quadruplexes, poly(dG), and poly(dA), respectively, on the clean surface of GCE. After the incubation of biosensors with D-11 or D-12, the peaks of dGuo and dAdo decreased prominently, and the peak of 8-oxoGua appeared at +0.50 V, suggesting that the interaction between D-11 (D-12) and DNA could result in the oxidative damage of guanine. Unexpected, the as-prepared DNA biosensor possessed satisfactory anti-interference property and good practicability in real samples. UV-vis and fluorescence spectra, and gel electrophoresis assays were employed to further confirm the intercalation mode of D-11 (D-12) towards DNA base pairs. Moreover, D-11 was proved to exhibit stronger anti-proliferation activity than mitionafide and amonafide against both A549 and HeLa cell lines.


Assuntos
Adenina , Antineoplásicos , DNA , Organofosfonatos , Humanos , Células HeLa , DNA/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Carbono/química , Triazenos , Estresse Oxidativo , Isoquinolinas
12.
J Colloid Interface Sci ; 659: 936-944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219312

RESUMO

Finding efficient photocatalytic carbon dioxide reduction catalysts is one of the core issues in addressing global climate change. Herein, the pristine CsPbI3 perovskite and doped CsPbI3 perovskite were evaluated in carbon dioxide reduction reaction (CO2RR) to C1 products by using density functional theory. Free energy testing and electronic structure analysis methods have shown that doped CsPbI3 exhibits more effective catalytic performance, higher selectivity, and stability than undoped CsPbI3. Additionally, it is discovered that CsPbI3 (100) and (110) crystal surfaces have varied product selectivity. The photo-catalytic effectiveness is increased by the narrower band gap of Bi and Sn doped CsPbI3, which broadens the absorption spectrum of visible light and makes electron transport easier. The calculation results indicate that Bi doped CsPbI3 (100) and CsPbI3 (110) crystal faces exhibit good selectivity towards CH4, with free energy barriers as low as 0.55 eV and 0.58 eV, respectively. Sn doped CsPbI3 (100) and CsPbI3 (110) crystal planes exhibit good selectivity for HCOOH and CH3OH, respectively. The results indicate that the Bi and Sn doped CsPbI3 perovskite catalyst can further improve the CO2 photocatalytic activity and high selectivity for C1 products, making it a suitable substrate material for high-performance CO2RR.

13.
IEEE Trans Pattern Anal Mach Intell ; 46(2): 1212-1230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37922160

RESUMO

In this paper, we show the surprisingly good properties of plain vision transformers for body pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model dubbed ViTPose. ViTPose employs the plain and non-hierarchical vision transformer as an encoder to encode features and a lightweight decoder to decode body keypoints in either a top-down or a bottom-up manner. It can be scaled to 1B parameters by taking the advantage of the scalable model capacity and high parallelism, setting a new Pareto front for throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, and pre-training and fine-tuning strategy. Based on the flexibility, a novel ViTPose++ model is proposed to deal with heterogeneous body keypoint categories via knowledge factorization, i.e., adopting task-agnostic and task-specific feed-forward networks in the transformer. We also demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Our largest single model ViTPose-G sets a new record on the MS COCO test set without model ensemble. Furthermore, our ViTPose++ model achieves state-of-the-art performance simultaneously on a series of body pose estimation tasks, including MS COCO, AI Challenger, OCHuman, MPII for human keypoint detection, COCO-Wholebody for whole-body keypoint detection, as well as AP-10K and APT-36K for animal keypoint detection, without sacrificing inference speed.

14.
Water Res ; 249: 120931, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101051

RESUMO

Fenton reaction has been widespread application in water purification due to the excellent oxidation performances. However, the poor cycle efficiency of Fe(III)/Fe(II) is one of the biggest bottlenecks. In this study, graphite (GP) was used as a green carbon catalyst to accelerate Fenton-like (H2O2/Fe3+ and persulfate/Fe3+) reactions by promoting ferric ion reduction and intensifying diverse peroxide activation pathways. Significantly, the carboxyl group on GP anchors iron ions to form GP-COOFe(III) which promote persulfate adsorption to form surface complexes and induce an electron transfer pathway (ETP). While the electron-rich hydroxyl and carbonyl groups will combine to from GP-COFe(II), a reductive intermediate to activate peroxide to generate free radicals (from H2O2 and PDS) or high-value iron [Fe(IV)] (from PMS). Consequently, different pathways lead to distinct degree of oxidation: i) radicals in H2O2/Fe3+/GP prefer to mineralize bisphenol A (BPA) with no selectivity; ii) Fe(IV) in PMS/Fe3+/GP partially oxidizes BPA but cannot open the aromatic ring; iii) ETP in PMS/ or PDS/Fe3+/GP drives coupling reactions to form polymeric products covered on catalyst surface. Thus, rational engineering surface functionality of graphite and selecting proper peroxides can realize on-demand selectivity and oxidation capacity in Fenton-like systems.


Assuntos
Compostos Férricos , Grafite , Peróxido de Hidrogênio , Polimerização , Ferro , Peróxidos , Oxirredução
15.
Environ Technol ; : 1-15, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37970842

RESUMO

Sewage sludge requires effective dewatering and high nutrients retention before disposal for agricultural application. Pressurized electro-osmotic dewatering (PEOD) process with low energy consumption can effectively remove water from sludge, but the influences of PEOD process on nutrients for agricultural application still lacks in-depth research. In this study, the influences of PEOD process on nutrients for agricultural application were investigated, including organic matter, nitrogen, phosphorus, potassium and silicon contents. Layered experiments were conducted to investigate the layered variation of nutrients in sludge and to understand the potential change mechanisms. The experimental results showed that PEOD process caused small losses (<10%) of organic matter and total phosphorus (TP) in sludge, but caused 11.2-18.4% loss of total nitrogen (TN). PEOD process also caused 18.6-27.0% loss of total potassium (TK) and over 80% loss of available potassium in sludge, and could weaken the potential salt damage during the agricultural application of sludge. Furthermore, the available phosphorus content of sludge in the anode area increased significantly after the PEOD process, indicating that PEOD process could enhance the phosphorus bioavailability of sludge in the anode area. Besides, PEOD process caused a slight loss of silicon components in sludge, but improved the long-term silicon dissolution and release ability of sludge. This work could expand the knowledge about the influences of PEOD process on sludge nutrients and provide scientific guidance for the agricultural application of PEOD sludge.

16.
Food Funct ; 14(19): 8797-8813, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37675852

RESUMO

Medium-chain triglycerides (MCTs) are absorbed and metabolized more rapidly than long-chain triglycerides (LCTs) and therefore are considered to have obesity-prevention potential in foods. The effect of adding tricaprylin, an MCT, to food on fat deposition and intestinal health is uncharted. In this study, mice were randomly divided into four groups and fed a normal diet (ND), ND with tricaprylin, a high-fat diet (HFD), or HFD with tricaprylin. Supplementation of 2% tricaprylin in HFD significantly increased the body weight, fat mass, liver weight, adipocyte size in adipose tissue and liver, and upregulated genes related to fat deposition. Metabolomic analysis of serum and adipose tissue revealed that tricaprylin significantly increased the contents of metabolites related to lipid metabolism, triglyceride storage, and fat deposition related signaling pathways. In vitro experiments and molecular docking analysis suggest that octanoic acid, a primary decomposition product of tricaprylin, may promote adipogenic differentiation of preadipocytes by acting as a PPARγ ligand to activate the expression of lipogenesis-related genes. Although supplementation with 2% tricaprylin in HFD cannot reduce fat deposition, it has a beneficial effect on intestinal health. Tricaprylin improved intestinal morphology, digestive enzyme activity, short-chain fatty acid concentration, and intestinal barrier function-related protein expression, while reducing inflammatory factor levels and the abundance of harmful intestinal microorganisms.


Assuntos
Tecido Adiposo , Dieta Hiperlipídica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Simulação de Acoplamento Molecular , Triglicerídeos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
17.
Environ Pollut ; 337: 122461, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689131

RESUMO

The three-dimensional electrokinetic remediation (3D EKR) achieved efficient removal of chromium (Cr) from the soil through mechanisms including electromigration, electroosmosis, and redox reactions. In this study, the long-term stability, leaching toxicity, bioavailability, and phytotoxicity of Cr in remediated soils were systematically analyzed to comprehensively evaluate the effectiveness of the 3D EKR method. The results showed that the concentration of hexavalent chromium (Cr (VI)) in the leachate of the 3D EKR system with sulfidated nano-scale zerovalent iron (S-nZVI) was more than 40% lower than those of the other 3D electrode groups, and the time required to reach the level III standard of groundwater quality criterion in China (0.05 mg/L, GB/T 14848-2017) was significantly shortened. The stabilization of Cr(VI) in contaminated soil after 3D EKR was maintained for 300 pore volumes (PVs), indicating that the treated Cr(VI) had good long-term stability. The leaching toxicity and bioaccessibility of Cr were assessed by the synthetic precipitation leaching procedure (SPLP), the toxicity characteristic leaching procedure (TCLP), and the physiologically based extraction test (PBET). The concentration of Cr(VI) in the SPLP, TCLP, and PBET leachates of the S-nZVI group decreased by more than 25% compared to the other 3D electrode groups, corresponding to the decrease in leaching toxicity and bioavailability of the treated Cr during the 15-day remediation period. In addition, the germination rate of wheat seeds and the average biomass of wheat seedlings in the S-nZVI group under alkaline conditions (EE) were higher than those in the non-polluting group (Blank-OH), indicating that the remediated soil had no obvious toxicity to wheat. In summary, 3D EKR achieved a satisfactory and stable remediation effect on Cr-contaminated soil, especially when using S-nZVI as the 3D electrode.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Ferro , Cromo/toxicidade , Cromo/análise , Solo
18.
Front Pharmacol ; 14: 1249041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719847

RESUMO

Background: Dihydropteridone derivatives represent a novel class of PLK1 inhibitors, exhibiting promising anticancer activity and potential as chemotherapeutic drugs for glioblastoma. Objective: The aim of this study is to develop 2D and 3D-QSAR models to validate the anticancer activity of dihydropteridone derivatives and identify optimal structural characteristics for the design of new therapeutic agents. Methods: The Heuristic method (HM) was employed to construct a 2D-linear QSAR model, while the gene expression programming (GEP) algorithm was utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA approach was introduced to investigate the impact of drug structure on activity. A total of 200 novel anti-glioma dihydropteridone compounds were designed, and their activity levels were predicted using chemical descriptors and molecular field maps. The compounds with the highest activity were subjected to molecular docking to confirm their binding affinity. Results: Within the analytical purview, the coefficient of determination (R2) for the HM linear model is elucidated at 0.6682, accompanied by an R2 cv of 0.5669 and a residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates coefficients of determination for the training and validation sets at 0.79 and 0.76, respectively. Empirical modeling outcomes underscore the preeminence of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM linear model manifested suboptimal efficacy. The 3D paradigm evinced an exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values, complemented by an impressive F-value (12.194) and a minimized standard error of estimate (SEE) at 0.160. The most significant molecular descriptor in the 2D model, which included six descriptors, was identified as "Min exchange energy for a C-N bond" (MECN). By combining the MECN descriptor with the hydrophobic field, suggestions for the creation of novel medications were generated. This led to the identification of compound 21E.153, a novel dihydropteridone derivative, which exhibited outstanding antitumor properties and docking capabilities. Conclusion: The development of 2D and 3D-QSAR models, along with the innovative integration of contour maps and molecular descriptors, offer novel concepts and techniques for the design of glioblastoma chemotherapeutic agents.

19.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188984, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722512

RESUMO

Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.


Assuntos
Gorduras na Dieta , Neoplasias , Humanos , Gorduras na Dieta/efeitos adversos , Metabolismo dos Lipídeos , Microambiente Tumoral , Neoplasias/patologia , Dieta
20.
Environ Sci Technol ; 57(47): 19012-19022, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37599507

RESUMO

A carbon-based advanced oxidation process is featured for the nonradical electron-transfer pathway (ETP) from electron-donating organic compounds to activated persulfate complexes, enabling it as a green technology for the selective oxidation of organic pollutants in complex water environments. However, the thermodynamic and kinetic behaviors of the nonradical electron-transfer regime had been ambiguous due to a neglect of the influence of pH on the mechanisms. In this study, three kinds of organic pollutants were divided in the carbon-based ETP regime: (i) physio-adsorption, (ii) adsorption-dominated ETP (oxidation rate slightly surpasses adsorption rate), and (iii) oxidation-dominated ETP (oxidation rate outpaces the adsorption rate). The differential kinetic behaviors were attributed to the physicochemical properties of the organic pollutants. For example, the hydrophobicity, molecular radius, and positive electrostatic potential controlled the mass-transfer process of the adsorption stage of the reactants (peroxydisulfate (PDS) and organics). Meanwhile, other descriptors, including the Fukui index, oxidation potential, and electron cloud density regulated the electron-transfer processes and thus the kinetics of oxidation. Most importantly, the oxidation pathways of these organic pollutants could be altered by adjusting the water chemistry. This study reveals the principles for developing efficient nonradical systems to selectively remove and recycle organic pollutants in wastewater.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Elétrons , Oxirredução , Carbono , Termodinâmica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...